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Abstract—Mathematical models that describe the relationship
between input and output of power amplifiers (PAs) are widely
studied in the literature. Usually, the complex voltage value at the
output is modeled as a non-linear function with memory of the
complex voltage value at the input. The purpose of this paper is
to model the output power as a non-linear function with memory
of the complex voltage value at the input. One of the main points
to be investigated in this work is the existence or not of a subset of
terms of a given parity (even or odd) suitable for this modeling. In
the theoretical study, two main forms of modeling were studied,
first real model (band-pass system) and its generic version for
complex numbers (low-pass system). Based on the study, it was
concluded that low-pass shaping is considerably faster than band-
pass and get the same result. Then we found our model equation,
based on the memory polynomial (MP) and the formula of the
power. After that, we performed simulations in the MATLAB.
Simulating our model and comparing the predicted and wanted
power, we achieved a normalized mean square error (NMSE)
about -30 dB.

Index Terms—Modeling, Power amplifier, Memory, Output
power, Parity.

I. INTRODUCTION

A radio frequency (RF) power amplifier (PA) is already
widely used in communication systems, primarily in wireless
communication, when you need to amplify a received signal
before sending it. The RF PA needs to be efficient and present
a linear behavior, and to do that is essential a model that at
the same time does not require a lot of computational work
and does not compromise its accuracy [1].

In this article, we will be using a black box system,
represented in the figure 1, to model the behavior of a PA. This
approach focuses on the input and output of the system and
does not concerns with physical details about what is inside
of the box.

Fig. 1. Diagram of Black box system.

We have studied 2 models, band-pass and low-pass. The first
is simpler and only uses real numbers. And the second is more

complex and uses complex numbers, but it runs considerable
faster than the first one because it adopts a lower sampling
frequency, resulting in a better method to implement in our
model [2].

Usually it is the output that is modeled, but recently the
output power started to be modeled, a value much more
important and relevant to the project and study of a PA in
RF. This modeling was studied in [3], and in this article we
propose a new model to predict the output power.

This article is structured with a brief review about behav-
ioral modeling of PAs in Section II, explaining and comparing
band-pass and low-pass systems. In Section III we apply the
studied behavioral model to find our model, that predict its
output power. In Section IV we presented the results based on
the simulation of our model for different values of the memory
order.

II. BEHAVIORAL MODELING OF PAS

A behavioral modeling proposes a way to get an output
of a system from a database of input and output. First the
model will be trained with the data that we already have, and
after that, the model will be able to generalize and predict an
output of the data, even when is a new input data. Our PA is
represented in the figure 2.

Fig. 2. Block diagram of a PA.

First we need to model the output of the system, and to
do that we will use the real memory polynomial (MP) model,
defined as:

y(n) =

P0∑
p=1

M∑
m=0

ap,mx
p(n−m) (1)



where y(n) is the predicted output in the sample n, x(n) is the
input in the sample n, P0 is the polynomial order truncation,
M is the memory order and ap,m are the constants that will
be calculated in the training.

Working with the memory polynomial equation, we can find
the output by two different methods: band-pass system and
low-pass system.

Beginning with a band-pass system, where we are working
with only real numbers. Let’s suppose the real input as a sine
wave:

x(n) = A cos(ωn+ θ) (2)

where x(n) is the input of the sample n, A is a constant that
represents the amplitude, ω represents the frequency and θ the
phase.

We can use the MP model where M = 0 and P0 = 3 to
predict the intermediate output:

w(n) = a1,0x(n) + a2,0x
2(n) + a3,0x

3(n) (3)

where w(n) is the intermediate output of the sample n, a1,0,
a2,0 and a3,0 are constants from our trained model.

Here we just want to verify that to every band-pass system,
there is an equivalent low-pass system, therefore it would have
been valid as well other values to the order of memory and
polynomial. For simplicity of presentation, we have arbitrarily
chosen those values.

Working with (2), (3) and after the impedance matching,
we are able to find the real output in function of the input
variables:

y(n) =

(
4a1,0A+ 3a3,0A

3

4

)
cos(ωn+ θ) (4)

where y(n) is the output in the sample n.
The second method is the low-pass system, where we will

be working with not only real numbers, but also complex
numbers. In this method, we will have the following new
complex input and complex output, equivalent to real input
(2) and real output (4):

x̃ = Aejθ (5)

ỹ =

(
4a1,0A+ 3a3,0A

3

4

)
ejθ (6)

where x̃ is the complex input, ỹ is the complex output, e is
the Euler’s number and j is the imaginary unit. We can relate
the real and the complex signal:

x(n) = <(x̃ejωn) (7)

y(t) = <(ỹejωn) (8)

Finally, working with (5), (6), (7) and (8), we can arrive
in the same conclusion that by the band-pass system in (4).
This was an specific example when P0 = 3 and M = 0,

but this relation between the band-pass system and the low-
pass system is valid independent of the parameters P0 and M
chosen, given some minor adaptations.

The real MP model, given in (1), is adapted to the complex
MP model [4], defined as:

ỹ(n) =

P∑
p=1

M∑
m=0

b̃2p−1,m|x̃(n−m)|2p−2x̃(n−m) (9)

where ỹ(n) is the complex predicted output in the sample
n, x̃(n) is the input in the sample n, P is the polynomial
order, M is the memory order and b̃2p−1,m are the constants
that will be calculated in the training.

Finally, the relation between the polynomial order and it
truncated form is given as:

P0 = 2P − 1 (10)

where P0 is the polynomial order truncation from (1) and
P is the polynomial order from (9).

In this article, we will be using the low-pass method, be-
cause it will be more computationally efficient. This happened
because the real input depends of ω, that will be in the GHz
order of magnitude of around, while the complex input will be
around MHz. And to respect the Nyquist–Shannon sampling
theorem, the lowest frequency will need lower sample rate,
running faster the simulations.

III. OUTPUT POWER MODELING

In general a PA model tries to predict the output based on
the input, and if you need the output power, first you will need
to get the output signal and then calculate its power. The goal
of this paper is to find a PA model capable of predicting the
output power based only in the input data. To do that we will
need to apply the MP model to find the output in function of
the input, and then apply to the power formula:

P (n) = ỹ(n)ỹc(n) (11)

where P (n) is the real output power in the sample n and ỹc(n)
represents the complex conjugate of the output in the sample
n. Note that we are considering the resistance equal to 1 Ω.

For P up to 3 and for any M, we found our model equation:



Pest(n) =

M∑
m1=0

M∑
m2=0

ãm1,m2 x̃(n−m1)x̃c(n−m2)

+

M∑
m1=0

M∑
m2=0

b̃m1,m2
x̃2(n−m1)x̃c(n−m1)

× x̃c(n−m2)

+

M∑
m1=0

M∑
m2=0︸ ︷︷ ︸

if (m1 6= m2)

c̃m1,m2 x̃(n−m1)x̃(n−m2)

× (x̃c(n−m2))2

+

M∑
m1=0

M∑
m2=0

d̃m1,m2
x̃(n−m1)x̃2(n−m2)(x̃c(n−m2))3

+

M∑
m1=0

M∑
m2=0︸ ︷︷ ︸

if (m1 6= m2)

ẽm1,m2 x̃
2(n−m1)x̃(n−m2)x̃c(n−m1)

× (x̃c(n−m2))2

+

M∑
m1=0

M∑
m2=0︸ ︷︷ ︸

if (m1 6= m2)

f̃m1,m2
x̃3(n−m1)(x̃c(n−m1))2x̃c(t−m2)

+

M∑
m1=0

M∑
m2=0

g̃m1,m2
x̃2(n−m1)x̃2(t−m2)x̃c(n−m1)

× (x̃c(n−m2))3

+

M∑
m1=0

M∑
m2=0︸ ︷︷ ︸

if (m1 6= m2)

h̃m1,m2
x̃3(n−m1)x̃(n−m2)(x̃c(n−m1))2

× (x̃c(n−m2))2

+

M∑
m1=0

M∑
m2=0

ĩm1,m2
x̃3(n−m1)x̃2(n−m2)(x̃c(n−m1))2

× (x̃c(n−m2))3 (12)

where Pest(n) is the real output power estimated in the
sample n and ỹc(n) represents the complex conjugate of the
output in the sample n, am1,m2, bm1,m2, cm1,m2, dm1,m2,
em1,m2, fm1,m2, gm1,m2, hm1,m2 and im1,m2 are complex
constants.

The reason why we decided to stop when P = 3 was the
complexity of the model. When P = 3 and M = 1, we have an
output of 6 elements, and an estimated power of 36 elements.
When P = 4 and M = 1, we would have an output of 8
elements, and an estimated power of 64 elements. It would
take considerably longer to calculate, analyze, organize and
generalize.

In (12), we can observe that we have elements of only an
even parity, 2 inputs in the first summation, 4 inputs in the
second and third summations, 6 inputs in the fourth, fifth

and sixth summations, 8 inputs in the seventh and eighth
summations and 10 inputs in the tenth summation. Besides
that, each element has the same number of inputs and complex
conjugate inputs.

IV. RESULTS

In this section we will simulate the model (12) using the
software MATLAB, with floating point double precision. We
will use the data collected from a PA in GaN tecnology,
class AB. It was used a Rohde & Schwarz FSQ vector signal
analyzer (VSA) having the sampling frequency of 61.44 MHz.
The PA was excited by a carrier signal of frequency 900 MHz
and modulated by a 3GPP WCDMA envelope signal having
about 3.84 MHz of bandwidth [5].

The data already has been separated in extraction (3221x1)
and validation (2001x1) to prevent any extrapolation problems.
And given the amount of data, to solve a system of linear
equations, we used the function mldivide (\) instead of the
matrix inverse (inv), avoiding ill-conditioning.

First we used the extraction data to train our model, and the
validation data to calculate the estimated output power. With
this result, we compared the wanted output power applying
the output validation data to (11) and getting its real part. To
the comparison, we are using the NMSE (Normalized Mean
Square Error) [6], defined as:

NMSEdB = 10 log

(∑N
n=1 |yref (n)− ytest(n)|2∑N

n=1 |yref (n)|2

)
(13)

where N is the length of the vector, yref is the vector of
reference, in this case the wanted output power, and ytest is
the vector that is being tested, the estimated output power.

We are using NMSE instead of MSE (Mean Square Error),
because it will give a normalized value, adjusting the error
to the magnitude of the used data. And for the same reason,
the NMSE is more adopted in this field of PA, facilitating
performance comparisons.

Based on what was written, we simulated our model for
different values of M and get the results compiled in the table
I.

TABLE I
RESULTS OF THE PROPOSED OUTPUT MODEL FOR M FROM 1 TO 5

(P; M) NMSE (dB) Time (s)
(3; 1) -21.66 01.61
(3; 2) -29.08 05.89
(3; 3) -31.46 11.56
(3; 4) -32.79 18.88
(3; 5) -33.21 27.22

We can notice that according to M grows, the complexity
of the model increases as well, and we expected to get a
lower NMSE until arrive in some limit. Based on the result,
we assume that this limit is between M = 2 and M = 3,
because after that the NMSE gets slowly smaller and does
not compensate the needed extra time.



Finally, to visualize the result, we can plot the Q-Q
(Quantile-Quantile) graph of the wanted and predicted power
in the same graph to make a comparison. We are going to plot
for M = 3. No clear distinction between wanted and estimated
values is observed.

Fig. 3. Q-Q chart when M = 3.

V. CONCLUSION

This work introduced a model that directly estimated the
output power as a memory polynomial of the complex input.
Based on the reported results of the simulation, we were able
to validate our model and get an NMSE between - 20 dB and
- 30 dB, depending of the memory order. In general terms,
we could say that if you need a model fast to simulate, you
can use the M = 2, and if you need the result with a better
accuracy, M = 3 should be good and not take much time.
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